ریاضیات 1
ریاضیات 1
کاربرد ریاضی تنها راه ادامه برای موفق شدن

عدد گنگ

عدد گُنگ، یا عدد اصم، هر عدد حقیقی است که گویا نباشد، یعنی نتوان آن را به صورت کسری که صورت و مخرجشعددصحیح باشند نوشت. مجموعه اعداد گنگ مجموعه‌ای ناشمارا است. از معروفترین این اعداد می‌توان از π، e و ۲√ نام برد.

۱- شاید اولین عدد گنگی که بشر کشف کرد ۲√ بوده باشد.کشف این عدد منتسب به فیثاغورثیان(شاگردان فیثافورث) است و گفته میشود در رقابتهای علمی که در آن زمان بین گروههای مختلف درجریان بود این عدد نقش یک برگ برنده بزرگ را برای فیثاعورثیان ایفا کرد.این عدد طول قطر مربعی به ضلع یک میباشد که براحتی از رابطه ی فیثاعورث(a^2 + b^2 = c^2) بدست می آید.در ریاضیات کلاسیک هم ۲√ رایج ترین گزینه برای اثبات وجود اعداد گنگ است.در واقع ثابت میشود که عدد گویایی موجود نیست که به توان 2 برابر با 2 شود.اهمیت کشف اعداد گنگ در آنجا بود که نوعی عدم قطعیت به ریاضیات میداد بدین معنا که برخلاف ذات ریاضی یعنی قطعی بودن آن در عمل اعداد گنگ را نمیتوان بطور قطعی بیان کرد مثلا بسط اعشاری همین عدد ۲√ نامختوم و غیر تکراریست و برای نمایش آن مجبوریم به چند رقم اعشار آن اکتفا کنیم و بقیه را نادیده بگیریم مثلا بنویسیم 1.4142=۲√

2- یکی دیگر از اعداد گنگ مهم و تاریخی عدد پی( 3.1415 = ∏ ) میباشد.بازهم پای عدم قطعیت به میان می آید.شما دایره ای به قطر یک رسم میکنید اما محیط این دایره عدیدیست با بسط اعشاری بی انتها و غیر تکراری!!! عدد پی در بسیاری از معادلاتی که با نوسان و تناوب سر و کار دارند ظاهر می شود. بنا به شواهد تاریخی نخستین بار عدد پی توسط بابلیان (3.125) و مصریان(3.1604) در 1900 سال قبل از میلاد محاسبه شد که هر دو تا یک رقم اعشار صحیح است.همچنین در متون هندی این عدد 3.139 تقریب زده شده که حدودا تا دو رقم اعشار صحیح است. اولین کسی که عدد پی را با دقت قابل قبول تخمین زد ارشمیدس در قرن سه قبل از میلاد بود.او به کمک روش تقریب دایره با چند ضلعی های منتظم و به کمک 96 ضلعی منتظم عدد پی را 3.1519 تخمین زد که تا سه رقم اعشار صحیح است.همیچنی دانشمندی چینی بنام زو چانگ ژی در قرن 5 میلادی عدد پی را 3.14159292 محاسبه کرد که تا 6 رقم اعشار صحیح است.تا هزاره دوم میلادی کمتر از ده قم اعشار عدد پی بطور صحیح محاسبه شده بود(به کمک عدد پی تا 11 رقم اعشار میتوان محیط کره زمین را با دقت میلیمتر تخمین زد!!!) رفته رفته و با پیشرفت ریاضیات و ابداع روش سریهای نامتناهی تخمین های بهتر و بهتری برای عدد پی بدست آمد بطوریکه امروزه با استفاده از کامپیوترهای شخصی میتوان این عدد را تا میلیاردها رقم اعشار صحیح تخمین زد!!!

3- پرکاربردترین عدد گنگی که بشر تا بحال کشف کرده عدد نپر( 2.7182 = e) است.کشف این عدد منتسب به جان نپر(John Napier) دانشمند اسکاتلندی و معرف لگاریتم است.البته اهمیت این عدد بیشتر مرهون کارهای لئونارد اویلر(Leonhard Euler) دانشمند سوییسی است.چه بسیاری نیز معتقدند انتخاب حرف e برای عدد نپر بخاطر اولین حرف از نام خانوادگی اویلر بوده است.البته عده ای نیز میگویند این حرف نخستین حرف کلمه ی نمایی(exponential) است.در واقع توابع نمایی بصورت f(x)=a^x هستند و در بین تمام اعداد حقیقی ممکنی که میتوانند بجای a قرار گیرند عدد نپر تنها عددییست که باعث میشود تابع نمایی در نقطه صفر دقیقا شیبی برابر با یک داشته باشد(مشتق تابع e^x برابر است با e^x و لذا شیب این تابع در صفر برابر است با e^0=1) عدد نپر در جاهای دیگر هم ظاهر میشود.مثلا فرض کنید در بانک مبلغ یک دلار قرار داده اید و بانک به شما 100درصد سود در سال پرداخت میکند یعنی در پایان سال شما دو دلار خواهید داشت(n=1)حال اگر بانک بجای صد در صد در سال شش ماه اول 50 درصد سود پرداخت کند(یک و نیم دلار در پایان شش ماه)و در شش ماه دوم نیز 50 درصد سود پرداخت کند(به ازای یک و نیم دلار پس انداز شما)در پایان سال 1.5+0.75=2.25 دلار خواهید داشت(n=2)اگر این بار بانک هر سه ماه یک بار به شما 25 درصد سود پرداخت کند در پایان سال مبلغ 1.25+0.3125+0.390625+0.488281=2.44141 در حساب خود خواهید داشت (n=4) اگر این روند ادامه پیدا کند یعنی بانک در تعداد دفعات بیشتری به شما سود کمتری پرداخت کند و این تعداد دفعات یعنی n به بینهایت میل کند شما در پایان سال به اندازه 2.7182 = e دلار در بانک خواهید داشت!!! همچنین اگر احتمال برنده شدن شما در یک بازی n^ -1 باشد و شما این بازی را n بار انجام دهید و n به سمت بینهایت میل کند احتمال اینکه شما هر n بازی را ببازید برابر است باe^ -1 .گنگ [۱][۲][۳]

اعداد گنگ (Irrational numbers)            

یونانیان به اعداد و روابط آنها با پدیده­های جهان طبیعت اعتقاد بسیاری داشته­اند، تا آنجا که فیثاغورث و طرفدارانش ادعا می­کردند که اعداد سازنده جهان هستند و هر چیزی با عدد قابل بیان است. یکی از دلایل فروپاشی مکتب فیثاغورثیان این بود که هنگتمی که می­خواستند معروفترین قضیه خود را(قضیۀ فیثاغورث) بیان کنند با این پرسش مواجه می­شدند که اگر طول هر یک از ضلع­های مجاور زاویۀ قائمه برابر واحد باشد، طول وتر چه عددی می­شود؟ و فیثاغورثیان که ادعا می­کردند اعداد سازنده جهان طبیعت هستند، حال نمی­توانستند آن عدد را بیان کنند.

تعریف: m عددی گنگ(اصم) است وقتی که هیچ­ کسری به صورت  که a,bϵ وجود نداشته باشد که برابر m شود.

نشان می­دهیم که عددی گنگ است.

اثبات به برهان خلف: فرض می­کنیم عددی گویا است، پس اعدادی مانند a و b وجود دارند بطوریکه    و  .

طرفین تساوی را به توان 2 می­رسانیم پس  و بنابراین a2=2b2 یعنی a2 عددی زوج است و چون توان دوم هر عدد فردی، فرد است، پس a زوج است و می­توان فرض کرد a=2k و بنابراین 4k2=2b2 که نتیجه می­دهد  b2=2k2 ، یعنی b2 و در نتیجه b زوج است. پس a و b اعدادی زوج شدند و دارای حداقل یک مقسوم علیه مشترک (یعنی 2 ) هستند که با فرض اولیه که (a,b)=1 در تناقض است. پس فرض خلف باطل و حکم ثابت است، یعنی عددی گنگ است.

نشان می­دهیم که اگر a=p+1 که در آن p یک عدد گنگ است آنگاه عدد a نیز گنگ است.

اثبات به برهان خلف: فرض کنیم a گنگ نیست، پس گویاست.

تساوی یگ عدد گویا و یگ عدد گنگ ناممکن است → a-1=p → چون اعداد گویا نسبت به تفریق بسته­اند پس a-1 گویاست→ a-1=p   →  a=1+p

و این یک تناقض است، پس فرض خلف باطل و حکم ثابت است.

رسم­پذیر بودن اعداد گنگ:

عدد a را رسم­پذیر گویند هرگاه بتوان با استفاده از خط­کش و پرگار پاره­خطی به طول a رسم کرد. حال آیا  رسم پذیر است.

می­دانیم که از هر نقطه خارج یک خط مفروض می­توان خطی عمود بر آن رسم کرد. اگر محل تلاقی این دو خط را در مبداء در نظر می­گیریم، به این محور رسم­پذیر گوییم. در این محور داریم:

1)(a.0)  و یا (0,a) را رسم­پذیر گوییم هرگاه a  رسم­پذیر باشد.

2) (a,b) را رسم­پذیر گوییم هرگاه a,b رسم­پذیر باشند.

3) هر شکلی را که روی این محور بتوان رسم کرد؛ اعم از پاره­خط، دایره و ... یک شکل رسم­پذیر گوییم.

حال می­توانیم نشان دهیم که  رسم­پذیر است. چون اگر (0,1) و (1,0) را روی محور به هم وصل کنیم بنا بر قضیۀ فیثاغورث پاره­خطی به طول  داریم.

*(تنها عددی که ممکن است رسم­پذیر نباشد عدد گنگ است.) تعیین اینکه عدد گنگی رسم­پذیر است یا خیر به معلومات و تکنیکهای ویژه­ای نیاز دارد که در مقاطع بالاتر مانند جبر 2 ارائه می­شود.

برای ساخت یک عدد گنگ کافیست بسط اعشاری این عدد، هیچ دوره­ تناوب یا دوره تکراری نداشته باشد. به این ترتیب می­توان بی­نهایت عدد گنگ ساخت.

در ریاضیات این گزاره که "هر عددی که گویا نباشد `گنگ است´ صخیخ نیست. اعدادی نیز وجود دارند که نه گویا هستند و نه گنگ. مانند " اعداد بی­نهایت کوچک". چند مثال از اعداد گنگ:  ,  , e , π , g و ... .

بسط­ دهی یک عدد گنگ نشان می­دهد که دارای ویژگی­هایی می­باشند:

1)بی­پایان هستند.

2)تکرار ناپذیر هستند، یعنی رقمهایشان الگویی غیر تکراری را نشان می­دهند.

چند اصل در مورد اعداد گنگ:

1)بین دو عدد گنگ، حداقل یک عدد گویا وجود دارد.

2)بین دو عدد گویا، حداقل یک عدد گنگ وجود دارد.

3)بین دو عدد گنگ، حداقل یک عدد گنگ وجود دارد.

قضیۀ هورویتز (Hurwitz theorem) :

هر عددی دارای تقریب­های "گویای" بی­نهایتی به شکل  است که در آن تقریب  دارای خطایی کمتر از  است.

طبقه بندی اعداد گنگ: اعداد گنگ را با توجه به چگونگی سختی محاسبه­اشان از طریق "تقریب" با اعداد گویا طبقه­بندی کرده­اند. به عبارت دیگر یک عدد گنگ از عدد گنگ دیگر، گنگ­تر است. به عنوان مثال عدد  دارای تقریب بهتری نسبت به عدد  است، پس  گنگ­تر از π است.

گنگ­ترین عدد گنگ عددی است که قبلا در هندسه شناخته شده است و به عدد گنگ طلائی g (Golden mean) مشهور است.             

عدد g جواب معادله x2-x+1=0 است. عدد گنگ طلائی عبارت است از " قطر یک پنج ضلعی با اضلاع برابر یک". گنگی بسیار بالای این عدد باعث کاربردش در هند است که هنوز علت آن مشخص نیست. این عدد نقش مهمی در مباحث "زیباشناسی ریاضی" دارد.

عدد π: عدد π را نسبت به محیط دایره به قطر آن تعریف می­کنند. در سال 1761 لامبرت (Lambert) ریاضیدان سوئدی ثابت کرد که عدد π گنگ است. همچنین لایدمن (Lindeman) ثابت کرد که عدد π یک عدد جبری نیست یعنی نمی­تواند ریشه یک معادله جبری باشد که ضرایب آن گویا هستند.

اولین بار به طور رسمی ارشمیدس روشی را برای محاسبۀ تقریبی عدد π بیان کرد:  

این کشف که عدد π یک عدد گنگ است به سالها تلاش ریاضیدانان برای تربیع دایره پایان داد.

عدد e: اویلر ثابت کرد e عددی گنگ است و دارای" کسرهای مسلسل" نامحدود ساده است. ژوزف لیدویل ثابت کرد e جواب "معادله درجه دوم با ضرایب صحیح" نیست. همچنین چارلز هرمیت (Charles Hermite) ثابت کرد عدد گنگ e، عددی غیر جبری است.

اجتماع اعداد گویا وگنگ، اعداد حقیقی است. مجموعه اعداد گنگ مجموعه­ای ناشمارا است. جورج کانتور (George Cantor) ریاضیدان آلمانی نشان داده است درحالی که بی­نهایت عدد گنگ و گویا وجود دارند؛ تعداد اعداد گنگ از اعداد گویا بیشتر است.

تابع درخت کریسمس: تابع f را بر  با ضابطۀ        در نظر می­گیریم.

fتابعی است که مجموعه نقطه­های ناپیوستگی آن اعداد گویای بازه  و نقاط پیوستگی آن اعداد گنگ بازه  هستند. نامگذاری این تابع به خاطر شباهت شکل این تابع با درخت کریسمس است.

اعداد گنگ و رشد گیاهان: ردیابی شاخکهای میوۀ کاج نشان می­دهد، آنها یکی یکی از قسمت پایینی اضافه می­شوند. زاویۀ بین یک شاخک با دیگری، همیشه یکسان است! این فرض معقول است که معمولا موثرترین فشردگی زمانی اتفاق بیفتد که این زاویه تا آنجا که ممکن است عددی گنگ باشد. به همین خاطر است که در طبیعت زاویه­های گنگ فراوان دیده می­شود.



نظرات شما عزیزان:

نام :
آدرس ایمیل:
وب سایت/بلاگ :
متن پیام:
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

 

 

 

عکس شما

آپلود عکس دلخواه:





ارسال در تاريخ دو شنبه 25 ارديبهشت 1391برچسب:, توسط علی هدایتی